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Abstract

This paper serves as a tutorial to introduce the wind
tunnel research community to configuration experiment
designs that can satisfy resource constraints in a
configuration study involving several variables, without
arbitrarily eliminating any of them from the experiment
initially. The special case of a configuration study
featuring variables at two levels is examined in detail.
This is the type of study in which each configuration
variable has two natural states — “on or off”, “deployed
or not deployed”, “low or high”, and so forth. The
basic principles are illustrated by results obtained in
configuration studies conducted in the Langley National
Transonic Facility and in the ViIGYAN Low Speed
Tunnel in Hampton, Virginia. The crucial role of
interactions among  configuration variables is
highlighted with an illustration of difficulties that can
be encountered when they are not properly taken into
account.

The application of a sequential test strategy is
illustrated for configuration testing, in which a single,
large-scale test matrix is replaced with a coordinated
series of smaller tests. Information obtained earlier on
informs decisions made in subsequent tests in the same
series. Fach test typically features a small subset of all
the possible combinations of configuration variable
levels, judiciously selected to quantify main effects and
likely lower-order interactions. This information is
obtained at the expense of reduced information about
higher-order interactions that are less likely to exist,
and less likely to be important if they do exist.
Substantial cost and cycle-time savings are achieved at
the expense of somewhat reduced precision in
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estimating main and interaction effects. This reduced
precision can cause some ambiguity in the estimated
magnitude of those effects, especially for the case in
which significant higher-order interactions exist.
Techniques are discussed for augmenting the
experiment design in order to efficiently resolve these
ambiguities. This augmentation phase enables higher
precision to be achieved for the case of main effects
and/or interactions identified as especially important in
earlier fractional factorial testing, without requiring an
unnecessarily large number of additional configurations
to be set.

Nomenclature
alpha angle of attack
CMXS stability-axis roll moment coefficient
defining
relation a device for determining aliasing
patterns in fractional 2-level factorial
designs
design
generator  one of the candidate effects in a

two-level factorial design used to
determine  the  assignment of
individual data points to specific
design fractions.

a test matrix augmented with columns
for higher-order terms and a column
of +1 values

design matrix

design space a Cartesian coordinate system in
which each axis represents an
independent variable. Every point in
this space corresponds to a
unique combination of independent
variables.

factor an independent variable

GWB Generic Winged Body

interaction a condition in which the effect on
system response of a change in one
independent variable depends on the
level of another

LEX leading edge extension

main effect change in response due to change in

specified independent variable
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MDOE
OFAT
table of signs

Modern Design of Experiments

One Factor At a Time

a design matrix for a two-level
factorial experiment in which low and
high wvalues of each factor are
represented by +1 values.

an array of numbers in which each
column corresponds to a factor and
each row corresponds to a data point.
The elements of the array are factor
levels for that data point.

test matrix

Introduction

A major category of wind tunnel testing that is
broadly described as “configuration testing” is
especially resource intensive because it typically
involves numerous changes to the wind tunnel model
itself. Unlike changes in model attitude (e.g., angle of
attack, angle of sideslip) and changes in flow state (e.g.,
Mach number, dynamic pressure) that can often be
performed remotely, configuration changes generally
require access to the model. Accessing the model to
change a configuration variable involves several labor-
intensive and time-consuming procedures that are not
required to change other types of variables. In major
wind tunnel facilities, tunnel ingress and egress
involves detailed procedures dictated by safety
considerations, for example. The configuration changes
often involve the construction and subsequent
dismantling of scaffolding around the model. The
configuration changes themselves typically entail the
removal and insertion of dozens of fasteners and
connectors of one type or another. Often the changed
response surfaces must be re-dressed with grit or trip
dots, which must then be inspected. FExtra care and
inspection are required to assure that intended changes
in a configuration variable do not result in unintended
changes to other elements of the model such as
misalignments or surface blemishes, a risk that is
incurred any time the model is physically handled
during a test.

Other factors can be associated with changing
configuration variables in special circumstances, which
are not encountered with changes in other types of
variables. For example, when configuration changes
are made in a cryogenic wind tunnel, it is necessary to
wait several hours before the model temperature
stabilizes around a level that it can be safely handled.
Several hours are usually then required to re-acquire
cryogenic test temperatures. There is also the risk in
any cryogenic tunnel entry that trace levels of moisture
can be imtroduced into the circuit, which can condense
as frost when the temperature is subsequently reduced

2

to cryogenic levels. If the frost condenses on the
model, it can directly affect the forces and moments,
and if it condenses elsewhere, 1t can affect such factors
as flow quality. Even if the tunnel is not cryogenic, a
certain amount of time is required after flow is re-
established following a tunnel entry, to stabilize testing
conditions as much as possible.

A further complication in configuration testing is
the fact that there is often a bewildering array of
combinations of configuration variables. Imagine that
the researcher is interested in examining two basic wing
geometries, say, each with two aileron designs, two
trailing edge flaps, two leading-edge slats and two sizes
of leading edge extension (LEX), with each LEX either
relatively inboard or relatively outboard of some
reference location on the wing. In addition, there is
interest in the effect of including canards or not, and of
including strakes or not. There is also interest in all
combinations of these configurations when the speed
brake is deployed and when it is not, and for landing
stability the gear up and gear down configurations are
of interest. Finally, the researcher would like to
examine a range of deflection angles for the flap and
aileron for each combination of the other configuration
variables.

The scale of this hypothetical specification of
configuration variables is by no means extreme
compared to real configuration testing. Yet even if the
researcher were content to limit control surface
deflections to only two levels (“low” and “high”, say),
this configuration test as described would entail over
4,000 configuration changes to test all combinations.
Conditions vary from tunnel to tunnel but even under
the best of circumstances this many configuration
changes would be expected to take a lot of time. For
example, while veteran researchers would probably
consider four such configuration changes per eight-hour
shift as ambitious for planning purposes, even at that
rate this test would require approximately two years of
wind tunnel time, even in a two-shift/day operation.
Beyond the enormous direct operating expense and
prolonged cycle time that such a comprehensive plan of
test would entail, there are also subtle adverse impacts
on quality that are easy to overlook. Over such a
prolonged time period there can be systematic
variations due to unexplained seasonal effects, for
example, or long-term wear of facility subsystems.
There can also be technology advances that result in
subtle unexplained variations between sets of data
acquired earlier and those acquired later in prolonged
test programs. For reasons of cost, quality, and time,
therefore, it is in the best interest of all concerned to
reduce the scale of configuration testing as much as
possible.
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Faced with the practical necessity to scale the
configuration test plan to meet resource constraints of
time and money, the researcher has few options other
than to select a subset of all the possible configurations
for examination, postponing other configurations until
another time. This is often accomplished by dropping
certain variables from the test plan that in the
researcher’s judgment are of secondary interest to
certain other variables that have a high priority.
Perhaps this time we will not include the canards or the
strakes, for example, and we will save the gear and
speed brake studies for another time. We may also only
focus on one of the two candidate wing shapes. These
changes would reduce the configurations in the original
plan to a number that could be examined in 3-6 weeks
in a two-shift operation, assuming 2-4 configurations
per shift. This would still be an ambitious plan, but a
plausible one.

There are obvious shortcomings to this type of
concession to resource constraints, and there are also
other shortcomings that may be less obvious but
potentially even more serious in that they can lead to
improper inferences. Clearly the test will suffer from a
lack of information obtained about the main effects of
the variables deleted from the plan. However, in
addition to the absence of information on the main
effects of individual variables, there is also lost
information on interaction effects. In the hypothetical
example we are considering, we have decided to retain
the LEX for investigation. However, it is entirely
possible that the performance of the LEX would be
different if we included canards in the configuration,
for example. So by dropping the canards, not only do
we lose information about their direct effects on the
forces and moments, but we also lose information on
how they impact the performance of the leading edge
extension. A decision to select one LEX geometry over
another might be made differently, for example, if the
influence that canards and strakes have on LEX
performance was better understood, or if any of the
other deleted configurations had been examined in
conjunction with the LEX. The same is obviously true
for interactions involving other configuration variables
as well.

We will examine a strategy for selecting a subset of
configurations that does not require the wholesale
deletion of independent variables from the test plan. It
is possible to retain in the test all of the original
independent variables, but to judicially select only a
relatively small subset of the possible combinations we
would have set with a conventional full-scale test plan.
Notwithstanding how small it is, the subset is chosen in
such a way that it provides essentially all of the
information that the full experiment would have
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yielded, but with a substantial reduction in cycle time
and associated expenses. As an important bonus, this
method also quantifies the interaction effects, and
eliminates from the unexplained variance a large
component attributable to systematic variations that
persist over time. Such long-term unexplained
systematic variation can be due to instrumentation drift,
temperature or other environmental effects, and even
operator fatigue or leamning effects (a common
phenomenon in which the operator’s performance
improves with practice). Such systematic variation
generally accounts for considerably more uncertainty
than can be attributed to the ordinary chance variations
in data that comprise the main focus of conventional
uncertainty analysis.

We assert that a great deal of wasted effort occurs
in configuration testing that can be attributed to our
reliance upon an especially inefficient experimental
methodology known as one factor at a time (OFAT)
testing. OFAT practitioners systematically vary one
independent variable at a time while holding all other
variables constant. The standard wind tunnel procedure
of varying angle of attack systematically while holding
constant all other variables such as Mach number and
model configuration is an example of how OFAT
methods are routinely used in experimental aeronautics.
This same impulse to hold all other variables constant
while examining only one at a time has an especially
deleterious effect on the productivity of configuration
testing. We will propose an alternative test strategy
known as “factorial” testing, in which all independent
variables are subject to change with each new data
point. For example, where an OFAT configuration test
plan might call for a series of points in which all other
variables are held constant while the deflection angle of
an aileron is changed, a factorial design would typically
call for all other independent variables to be changed as
well as the aileron. Factorial designs thus attack all
independent variables in parallel, not serially, one at a
time. Not only does this increase productivity
significantly, requiring many fewer total configuration
changes, it also facilitates the study of interactions
among the independent variables that OFAT methods
are not well-suited to quantify.

Efficient factorial designs have been widely used in
industrial engineering disciplines for many years,
especially those that focus on process and product
optimization. They are less well known in
experimental aeronautics, however, notwithstanding
their considerable potential in such application as
configuration testing. This paper is therefore intended
primarily as a tutorial introduction of factorial methods
that are not widely practiced at this time in the
aerospace industry, but that nonetheless have
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significant potential for cost savings as well as for
insights into the interaction effects that govern how
independent variables operate jointly to influence
system response. As noted, they can also improve the
quality of experimental results substantially.

The Role of Interactions

Factorial experimentation has an important
advantage over conventional OFAT testing in that it 1s
capable of detecting and quantifying interactions among
independent variables. This advantage can best be
illustrated with an example. We will consider a two-
factor configuration test that was recently conducted in
the National Transonic Facility at Langley Research
Center using an advanced extension of the basic
factorial techniques we will introduce in this paper.
These advanced techniques taken as a whole are
referred to as the Modern Design of Experiments
(MDOE), which is being developed at Langley as a
proposed replacement for the weaker OFAT techniques
in common use in the aerospace industry at the end of
the 20™ century.

MDOE extends factorial design to include various
tactical quality assurance measures that enable the
researcher to assume a greater role in ensuring quality
through the design of the experiment.”> MDOE
methods also focus on matching resources to the
specific objectives of an experiment to ensure that
ample resources are planned for the tasks at hand but
that resources are not wasted, as by the gratuitous
acquisition data in volumes that far exceed what is
needed to control inference error risk. (The MDOE
productivity doctrine dictates that inferences be drawn
at high rate, not that data be collected at a high rate.?
Excess resources beyond what is needed for a particular
purpose are therefore applied to achieving additional
insights, rather than acquiring additional data to drive
the inference error probability for one specific objective
even lower, after risk levels declared acceptable by the
principal investigator in the formal planning process
have already been achieved.) The full application of
MDOE methods also entails advanced analysis
techniques, in which unexplained variance and the
associated uncertainty in experimental results 1is
precisely characterized. These methods also focus on
forecasting the response of the system to a general
population of potential independent variable
combinations, based on the responses to a sample of
independent variable combinations observed in the
experiment.

The entire spectrum of MDOE methods is beyond
the scope of this paper, which nonetheless does focus
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Figure 1. OFAT method reveals no C, improvement
when deflection varied while holding normalized
gap constant at nominal level.

on a key MDOE concept; namely the advantage of
factorial methods over OFAT techniques. Consider the
configuration study referenced above, in which one of
the objectives was to define the combination of flap
deflection and gap between the flap and the trailing
edge of the wing that maximized lift for the approach
configuration of a commercial jet transport.! The
conventional OFAT approach to this objective would
be to hold one of the variables constant at some
nominal level — gap, let us say — while systematically
varying the other (flap deflection) to find where lift is
greatest. Having thus determined the optimum flap
deflection, the flap would be held constant in this
position while the gap was varied, again seeking the
greatest lift. (We emphasize that OFAT methods such
as these were not used in this experiment. We cite them
here simply to illustrate a typical OFAT approach to
such problems. The MDOE method that was actually
used resulted in a response model of lift as a function of
flap deflection and gap that enables us to forecast lift
within specified precision intervals for all combinations
of flap deflection and gap in the design space. Here we
simply use this response model to simulate the results
that a typical OFAT approach would have generated, as
a pedagogical demonstration.)

Figure 1 represents five measurements of approach
lift at different flap deflections uniformly distributed
over the full range of deflection angles of interest in this
experiment.  Error bars represent a “two-sigma”
precision interval half-width of 0.005 in lift coefficient
as specified in this experiment. The data are presented
as change in lift coefficient relative to that which is
achieved with the nominal flap deflection angle, plotted
against departures from the nominal flap deflection

American Institute of Aeronautics and Astronautics



-0.10

CL re Nominal

-0.15

-0.20
-1.5

-1.0
Gap re Nominal, coded units

0.5 0.0 0.5 1.0 1.6

Figure 2. OFAT method reveals C;, improvement of
0.0106 when normalized gap reduced by 0.32 in
coded units, deflection held constant at nominal
level.

angle in coded units, where O represents no change
from nominal flap deflection. There is no obvious trend
in the data and in fact the 95% confidence interval for
the slope of a least-squares straight line fit to these data
extends from -0.0072 to +0.0032. Since this interval
includes 0, we conclude (with an inference error risk of
no more than 5%) that with a nominal gap setting,
changes in flap deflection over the range investigated
provide no significant increase in lift. We therefore
have no basis for recommending a flap deflection other
than the nominal setting when the gap is nominal.
Having now established that the nominal flap
deflection is optimal over the range we are considering,
the OFAT practitioner would then hold that factor

CL re Nominal

-1.0

0.5 0.0 0.5 1.0 1.5

Deflection re Nominal, Gap=-0.32

Figure 4. OFAT method reveals C;, improvement of
0.0538 when normalized gap held constant at -0.32
in coded units, and deflection increased by 1.0 in
coded units.
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Figure 3. OFAT lift optimization. Changing one
factor at a time starting with flap deflection angle.

constant at the nominal (optimum) level and vary gap.
Figure 2 shows what the result would be. It suggests
that some increase in lift coefficient (0.0106) could be
achieved by reducing the size of the gap by 0.32 in the
coded units of the figure. The manufacturer would
have to decide if the tooling costs and other production
expenses associated with reducing the gap would be
justified for an improvement in lift of only a factor of
two times the experimental error budget. If not, then
the decision would be to retain the nominal set points
for flap deflection and gap. Figure 3 shows where the
optimized set point appears within the design space
when the factors are varied one at a time, starting with
flap deflection.

One of the weaknesses of the OFAT approach to
optimization can be illustrated by repeating the
experiment with the order of the variables reversed; that
1s, with the deflection first held constant at its nominal
level while the gap is optimized, followed by holding
the gap constant at the optimum level while the
deflection is optimized. Figure 2 corresponds to the
first step, which suggests that a gap setting in coded
units of -0.32 would maximize lift at nominal flap
deflection, as before. Figure 4 is a plot of change in lift
as a function of change in deflection from nominal, at
the OFAT optimal gap of -0.32 in coded units. Clearly,
there is a trend of increasing lift with increasing
deflection at this gap setting. Note also that the flap
deflection that maximizes lift apparently lies outside the
range of deflection angles tested. That is, figure 4
suggests that the performance of the wing could be
improved by increasing flap deflection beyond the
largest value set in the experiment. However, within
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Figure 5. OFAT lift optimization. Changing one
factor at a time starting with gap.

the design space of the experiment, the gap and
deflection set points that appear to maximize lift with
this ordering of the variables are, respectfully, -0.32 and
+1.0 in coded units. Optimizing the deflection at a gap
setting of -0.32 adds 0.0538 to the maximum lift
coefficient. This is on top of the 0.0106 achieved by
optimizing the gap, for a total OFAT improvement of
0.0644 when gap is optimized first and deflection is
optimized second. Figure 5 shows where the optimized
set point appears within the design space when the
factors are varied one at a time, starting with gap.

The essence of Figure 5 can perhaps be most
succinctly captured by noting that it is not figure 3.
That is, the OFAT technique produces two substantially
different results, depending on the order in which one
factor 1s held constant while the other is varied. Since
the order is determined arbitrarily by the researcher,
this is a troubling development. However, it is not the
most troubling development, as figures 6 and 7 reveal.
The most troubling aspect of the OFAT approach to
optimization is not so much that the results depend on
the order in which the researcher decides to investigate
the variables, unsettling as that is. The most serious
difficulty is that under commonly occurring
circumstances in which the independent variables
interact, these OFAT optimization procedures produce
the wrong answer no matter which variable is examined
first.

Figure 6 reveals the source of the difficulty. It
displays contours of constant lift coefficient throughout
the design space. Fach contour represents a change in
lift relative to the original nominal combination of flap
defection and gap that corresponds to the coordinates
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Figure 6. Changing both gap and deflection results
in a greater improvement in lift than changing either
one alone.

(0,0) in the coded units of this figure. It is clear from
this figure why the OFAT procedure is inadequate in
this situation. A path that traverses the design space in
a direction that is parallel to either axis (which
corresponds to holding one factor fixed while varying
the other) will sometimes be more parallel to the
contour lines and sometimes more perpendicular.
Relatively little change in lift occurs on paths that are
nearly parallel to the contour lines, while paths that are
perpendicular encounter relatively more change in lift.
For example, it is clear from figure 6 why the initial
OFAT procedure resulted in an impression that with a
nominal gap setting, changes in flap deflection had little
effect on lift over the range of changes in this
experiment. There is a contour of constant lift that runs
through the original nominal configuration set point at
(0,0) that is essentially parallel to the deflection axis ar
that gap setting. Therefore changes in deflection at this
gap setting do little to change lift. However, a change
in deflection clearly does result in a change in lift at
other gap settings. For example, increasing deflection
with the gap set at -1 in coded units results in a rapid
increase in lift with flap deflection.

We have a situation in which the change in lift
induced by a given change in flap deflection is different
at one gap setting than another. That is, there is an
interaction between flap deflection and gap. One of the
interesting consequences of this interaction is that even
though changing deflection from O to 1 in coded units
has a negligible effect on lift with the gap held constant
at 0, and changing the gap from 0 to -1 with the
deflection held constant at 0 actually decreases the lift,
when both changes are made together the lift increases
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Figure 7. MDOE achieves greater lift improvement
by accounting for interaction effects. OFAT results
depend on the order that the variables are examined,
because interactions are not taken into account.

substantially. Figure 7 compares the two different
OFAT results with the improvement that could be
realized if interaction effects were taken into account by
varying both factors at the same time rather than one at
a time. Accounting for interactions in this way results
in considerable improvement over either OFAT result.

Interaction effects such as this are not uncommon
in experimental aeronautics and in fact they are the
general rule; it is rare to encounter independent wind
tunnel variables that do not interact with each other.
Furthermore, interactions among more than two
variables are not unusual. If the degree of interaction
between flap deflection and gap is different at one angle
of attack than another, say, then there would be a three-
way interaction involving deflection, gap, and alpha. If
this three-way interaction changed with Reynolds
number, there would be a four-way or 4™-order
interaction, and so on. Understanding such interactions
provides rich insights into the underlying physics of the
process under study. Conversely, a failure to appreciate
interactions can produce the kinds of results illustrated
in figures 3 and 5 — results that are inconsistent, and
erroneous. The fact that OFAT methods are so
maladroit at illuminating interaction effects is one of
their principal weaknesses, especially for applications
as rich in interactions as configuration testing.

Two-Level Factorial Designs

Factorial experiment designs offer an attractive
alternative to OFAT testing in those ubiquitous
circumstances when interaction effects are important.
Figure 8 illustrates how a factorial experiment might
have been applied to the lift optimization problem, for
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Figure 8. Factorial lift optimization. Changing both
factors at the same time.

example. This figure represents the layout for a
particularly efficient class of factorial designs called
two-level factorials, which we will treat in this paper.
In a two-level factorial design, each factor is set at only
two levels. These levels are typically assigned the
descriptors “low” and “high” to distinguish one from
the other, although the labels are arbitrary and apply
equally well to quantitative variables that may actually
have relatively low and relatively high levels such as
flap deflection and gap in this example, or to
categorical two-level variables that may have values
such as “gear up, gear down”, “canards on, canards
off”, etc.

The reader may be uneasy about an experiment
design that features only two levels of important
independent variables, because two levels permit only
first-order pure effects to be described. Effects such as
within-variable curvature require more than two points.
However, early in a configuration experiment it may be
premature to consider relatively high-order effects.
Often the initial objective of a complex configuration
study is to arrive quickly at insights that enable is to
focus subsequent resources on variables that most
significantly impact the response of the system. The
two-level factorial designs that facilitate these early
insights can be augmented efficiently later in the
investigation, to provide additional levels of the
variables for which higher-order effects are of interest.

Table 1 1s a test matrix for the two-variable, two
factor experiment represented schematically in Figure
8. The factors A and B represent flap deflection and
gap, respectively, and the “high” and “low” levels are
represented by “+1” and “-17, as is a common
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convention. For the design of figure 8, these low and
high values refer to the coded values 0 and +0.5,
respectively, for factor A (deflection). They refer to
coded values -0.5 and 0, respectively, for factor B
(gap). The third column lists the change in lift
coefficient at each point relative to the nominal setting
for deflection and gap, denoted by (0,0) in coded units.

Table 1. Factorial zest matrix,
with response vector

A B ACy

-1 -1 0.0070
-1 1 0.0000
1 -1 0.0500
1 1 -0.0018

We define the “main effect” for factor A as the
change in response that results from changing factor A
from its low level to its high level. Note in Table I,
however, that we can make this change at either of the
two levels of factor B. With factor B at its low level,
changing factor A from low to high results in a change
in system response from 0.0070 to 0.0500, or an A
effect at low B of 0.0500 — 0.0070 = 0.0043. Similarly,
the A effect at high B is -0.0018 — 0.0000 = -0.0018.
The overall A effect is defined as simply the average of
these two values, or (0.0043 —0.0018)/2 =0.0206. The
B effect is defined analogously.

The definition of these main factor effects and the
layout of Table I suggest a general algorithm for
computing the main effects. The column of factor
levels is simply multiplied term by term times the
column of responses, and the products are summed.
The result is then divided by the number of “+1” values
in the factor column — always half the total number of
rows in designs such as this. For example, using this
algorithm to compute the main A factor effect, we see
from Table I that it is [-0.0070 -0.0000 +0.0500
+ (-0.0018)]/2 = 0.0206. Similarly, the B effect is -
0.0294.

Note that the A effect is computed at both levels of
the B factor and then averaged. No matter how many
factors there are in the experiment, the general
algorithm for estimating main effects computes them at
all combinations of all levels of the remaining factors
and then averages those results. We say because of this
that the two-level factorial experiment design enjoys a
“wide inductive basis”. A large main effect is therefore
a more reliable indicator that this variable is important
than if it had been estimated for only a limited
combination of the remaining variables.

Interaction effects can be estimated much like the
main effects. We define the AB interaction as half the
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difference between the A effect at high B and the A
effect at low B. (The factors can be reversed in this
definition so that the AB interaction is also half the
difference between the B effect at high A and the B
effect at low A. Both give the same numerical result.)
The A effect at high B was -0.0018 and at low B it was
0.0043. The AB interaction is therefore (-0.0018
—0.043)/2 = -0.0224. The minus sign indicates that in
this region flap deflection and gap are compensating
variables. That is, the effect on lift of a decrease in flap
deflection can be offset by an increase in gap.

Table II. Factorial design matrix,
with response vector

Constant A B AB AC;,
1 -1 -1 1 0.0070
1 -1 1 -1 0.0000
1 1 -1 -1 0.0500
1 1 1 1 -0.0018

The same algorithm for computing main effects
can be applied to compute the interaction effect if a
suitable column of #1 values is provided for the
interaction.  That column is easily obtained by
multiplying corresponding levels in the main factor
columns, producing the AB column in Table II. When
a conventional test matrix such as in Table I is
augmented with columns for higher order (interaction)
terms and a column of +1 levels is added on the left
side as in Table II, the resulting matrix is called the
design matrix. The role of the column of +1°s will be
described shortly. For now, note that multiplying term
by term the +1 levels in the AB interaction column by
the corresponding response values, summing, and
dividing by the number of plus signs, yields [(+0.0070
-0.0000 -0.0500 +(-0.0018)] = -0.0224, the value we
computed above from the definition of the interaction.
That is, the same algorithm that worked for the main
effects also works for the interactions. The design
matrix, also called the table of signs, is therefore a
convenient structure for computing all main effects and
interactions.

The design matrix concept expands in a
straightforward way to accommodate any number of
factors. A three-factor two-level design would have
columns for factors A, B, and C, say, with two-way
interaction columns for the AB, AC, and BC interaction
effects. There would also be a column for the ABC
three-way interaction, generated by multiplying +1
values in the A, B, and C columns term by term just as
for the two-way interactions. The ABC three-way
interaction is defined analogously to the two-way
interactions, in that it is half the difference between the
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AB interaction at high C and the AB interaction at low
C. (As before, the definition is the same no matter
which of the main effects is labeled A, B, or C))
However, it is generally more convenient to estimate
the three-way interaction using the table of signs
algorithm than to apply the definition directly.

Two-Level Factorials for Optimizing Response
In an optimization problem, it is convenient to

envision the response as a function of the independent
variables that can be represented as a surface over the
design space. In this case of the lift optimization
problem, the height of the response surface above the
design space is proportional to lift, and we seek the
location in the design space where this surface peaks.
The geometric model is useful for distinguishing
between locations that are near the peak and those that
distant from it. Points that are not in the immediate
vicinity of a peak are often on more or less planar
slopes of the response surface. The researcher has an
opportunity early in a factorial experiment to determine
whether or not the design is centered near an extremum
such as a peak.

One technique for estimating proximity to a
response surface peak is to compare the average
response at all points in the design (the four corners
indicated in figure 8, say), with a point at the center of
the design. The center point for the design represented
in figure 8 would be at (+0.25, -0.25) in coded
variables. If the response at the center point is roughly
the same as the average of the responses at the corner
points, it suggests that the response is relatively planar
in this region and that the peak is therefore not in the
local region. In the case of the lift optimization
problem, the average of the comer responses can be
estimated from the responses in Table I. The average 1s
0.0138. That is, the average deviation from the lift
coefficient at nominal deflection and gap settings
measured at the four corners of this design is 0.0138.
The center-point value was 0.0204 in this case. The
difference is only 0.0066, which is not large compared
to the 0.005 error budget for this experiment.
(Assuming an 0.005 two-sigma uncertainty in each
individual estimate of lift coefficient, a difference of
0.0066 between the center point and a four-point
average of the corners is too small to resolve with 95%
confidence, for example.) We conclude therefore that
because the response measured at the center of the
design in figure 8 is roughly in the same plane as the
responses measured at the four corner points, the design
is located on some slope of the response surface and is
not centered near the peak. We therefore will seek
another more interesting region in the design space to
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Figure 9. The path of steepest ascent estimated

from the initial design of figure 8.

explore.  This illustrates one way that two-level
factorial designs can save resources. In this case a
relatively small number of configuration changes has
indicated that we are not in a very profitable region for
further exploration, and therefore we will not invest
further resources exploring this region for a peak in the
response surface for lift. A conventional high volume
data collection strategy might have invested substantial
resources just “getting data” throughout this region and
others, notwithstanding the fact that the peak of interest
is nowhere nearby.

The initial two-level factorial experiment revealed
that the peak in the lift response is somewhere else in
the design space. It also indicates the direction in
which to search for the peak, in that the main factor
effects can be used to compute the direction cosines for
a unit vector that points in this di eFIJ'Qn he direction
cosines are A7 A%+ B? and B/V A% + B? , where A
and B are the main effects for flap deflection and gap,
computed above as 0.0206 and -0.0294, respectively.
The direction cosines for the A and B factors are thus
0.5738 and -0.8190. They define what is called the
path of steepest ascent, which can be represented by a
line with one end at the center of the design and the
other end at any point for which the displacements from
the center parallel to the A and B effects axes within the
design space are in the ratio of 0.5738 to -0.8190. Such
a line points at an angle of -55° relative to the flap
deflection axis of the design space, as indicated in
figure 9.

Note that the path of steepest ascent is
approximately perpendicular to the contours of constant
lift in the region of the design, indicating that it

American Institute of Aeronautics and Astronautics



represents a relatively direct path toward the peak in the
response surface. We would explore along this path,
acquiring a relatively coarse sample of points intended
simply to bracket the peak. We would then translate
the design to our updated estimate of the peak’s
location, perform another two-level factorial
experiment centered there, and again test for curvature
by comparing the lift at the center of the design with the
average lift at each of the corners as before. Another
path of steepest ascent could be estimated if the new
region still appeared planar. If the center-point test
revealed curvature, however, the two-level factorial
could be augmented with additional levels of flap
deflection and gap to more adequately capture
nonlinearities in the behavior of the response surface in
this region. By limiting these additional configuration
settings to the region of interest — near where the
response surface is believed to peak — considerable time
and effort can be saved that would otherwise have been
devoted to a detailed exploration of relatively
uninteresting regions of the design space. If these other
regions are also of interest and the resources exist to
explore them, then this can still be done. However,
simple two-level factorial designs can provide the
researcher with objective information for prioritizing
the expenditure of resources. This process of beginning
with relatively limited experiments and building toward
more complex investigations is described as “sequential
assembly.”

As an epilogue to the lift optimization problem we
note that sequential assembly was not employed when
this experiment was actually conducted. We simply
cite it to illustrate how these techniques might have
been used to efficiently zero in on the peak in the lift
response surface. In the actual experiment, the subject
matter specialists felt that substantial interaction
between flap deflection and gap was sufficiently
unlikely to justify an assumption based on OFAT-only
information that the peak was located near the center of
the design space. The experiment therefore proceeded
immediately to relatively expensive and time-
consuming multi-level settings of flap deflection and
gap in order to characterize the response surface
throughout the design space and to quantify the peak
lift. This lead to the definition of the contours in figure
9, which provide hindsight evidence that not all the
initial assumptions were entirely justified.

For example, not only was the response surface
peak not located near the center of the design space, it
was not even within the design space at all
Furthermore, far from being negligible, the interaction
effects in this experiment dominated even the main
effects. Subject matter expertise correctly suggested
that if flap deflection was important over the design-
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space range, it would be an increase in deflection that
caused lift to improve. Likewise, if a change in gap
was to be effective, it would be through a reduction in
the gap. Therefore an alternative OFAT plan of test
called for three single-point measurements, one at
design-space coordinates (0,0) corresponding to
nominal flap deflection and gap setting, one at
coordinates (0,-1) corresponding to nominal flap
deflection and minimum gap, and one at coordinates
(1,0) corresponding to maximum deflection at nominal
gap. The strategy of this classic OFAT design was to
select among these three design-space locations the one
that maximized lift.

If interactions could be safely neglected, this
strategy would identify potential improvements
attributable to changing deflection or gap, while
minimizing the number of configuration changes.
While this design could describe the effects of changing
deflection OR gap, it could not describe the effects of
changing deflection AND gap. Because of the strong
interaction, deflection and gap were not simply additive
effects as they would have been absent the interaction.
Changing deflection alone would have produced an
improvement too small to clearly resolve within
experimental error and reducing gap alone actually
would have caused a substantial decrease in lift.
Changing them both together resulted in over 1000
counts of lift improvement.

It is a source of some frustration to advocates of
formal experiment design that such results tend to be
anecdotal. In this particular experiment, an interaction
effect proved to be important. However, had the
alternative OFAT experiment been conducted, the
conclusion would have been that there is no evidence to
suggest a set-point other than the original nominal level
at (0,0) in the design space. (Indeed, such OFAT
methodology no doubt lead to the original specification
of nominal set-point, with its lift penalty of 1000+
counts.) Without the factorial element of the
experiment imposed as part of a special MDOE
evaluation in this experiment, the effect of ignoring
interactions could well have gone undiscovered. There
are no doubt many such interaction effects in wind
tunnel testing today that will continue to remain
undiscovered as long as factorial methods are ignored
in favor of more familiar OFAT techniques.

Multiple Factors
Two-level factorials have advantages that make

them well suited for experiments involving more than
the two factors considered in the lift optimization
experiment. We now consider a more involved two-
level design that involved a total of six factors, which is
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by no means an unusually complex example of
configuration testing.

A landing stability test was recently conducted at
Langley Research Center in which a generic winged
body used in spacecraft landing studies was tested with
a number of configurations. This study was designed as
a two-level factorial with six variables, which are
described in Table III. A table of signs could be easily
constructed for this experiment and each of the main
effects and interactions computed using the algorithm
introduced above. In practice, such experiments are
usually analyzed with software designed explicitly for
this purpose. Responses were recorded for the six
principal body axis and stability axis forces and
moments when the model was in a high angle of attack
approach attitude with zero sideslip, and a Mach
number appropriate for landing. Similar analyses were
conducted for all responses but we will use roll moment
as an illustration.

Table IIL. Variables in landing stability study.

Factor Symbol | Low Level | High Level
Left
Elevon A -20° 0°
Deflection
Right
Elevon B -20° 0°
Deflection
Body o o
Flap C -10 0
Canards Off On
Landing
Gear E Up Down
Speed Not
Brake F Deployed Deployed
Blocking

A full factorial two-level six-factor design requires
2% = 64 total configurations. Before we discuss the
details of such an experiment, note that it may be
necessary to distribute this many configuration changes
over a fairly extended period of time. If we set the
ambitious goal of averaging one configuration change
every 15 minutes, we could only make half of the 64
configuration changes in one eight-hour shift, even in
the unlikely event that there were no unanticipated
delays so that 60 minutes were available for testing out
of every hour. In a single-shift operation, this would
entail an overnight delay between the two halves of the
experiment. In a two-shift operation, it means that
different crews would acquire the data in one shift than
another. In either case, there is some potential for a
bias shift from one subset of the data to the other. In an
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Figure 10. Schematic representation of a block
effect.

overnight shutdown, for example, there can be bias
shifts in the instrumentation induced by thermal effects
and other reasons, or there could be a myriad of subtle
shutdown/restart discontinuities which, while possibly
small in an individual absolute sense, could nonetheless
combine to form a net error that is some substantial
portion of the entire error budget in a precision wind
tunnel test. We use the term “block™ to describe in this
case a block of time in which greater commonality may
exist among points within the block than between
different blocks. A net difference in response across
blocks that is too large to attribute to ordinary chance
variations in the data is called a “block effect”. Figure
10 is a schematic representation of a block effect.

While block effects do not necessarily occur every
time, they can have a serious impact and they can also
difficult to detect. The prudent researcher is therefore
advised to defend against them. One of the great
advantages of two-level factorial designs is that they
can provide a convenient and effective defense against
block effects, simply by assigning points blocks in a
particular way, as we will now describe.

To illustrate the impact of block effects on our
ability to properly estimate the main and interaction
effects in a two-level factorial experiment, consider the
data in Table IV. These points are a subset of the full 64
configurations that were set in the GWB landing
stability test. They represent all the points for which
elevon and body flap deflections were all zero. That is,
Table IV represents a two level factorial experiment in
only three factors: speed brake, canards, and landing
gear. We use such a subset simply to save space and
simplify the example, but the results we will present
apply no matter how many factors there are.

Imagine that for some reason it is necessary to
subdivide the eight configurations represented in Table
IV into two blocks. Perhaps there was some unforeseen
delay that caused only the first four configurations to be
set before close of business on one day, for example, so
that the last four points were acquired after an
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intervening overnight shutdown. Assume further that
some unknown source of error has biased all of the
estimates of roll moment made in the first block so that
they are each 0.0005 too high, and that in the second
block some equally unrecognized error source has
biased the roll moment estimates too low by, say,
0.0003. If the acceptable uncertainty in roll moment is
represented by a standard deviation of 0.0001, say, then
these errors are quite significant. In Table IV-a we
represent the data acquired in what is called “standard
order”, which most clearly represents the layout of the
design. Columns of data feature roll moment with and
without the hypothetical bias errors described above.
Table IV-b is identical to Table IV-a except for the
order of the points. The same points are acquired, but a
different subset is acquired on the first day than on the
second day.

Table IV. Block Effects.

CMXS
Day | D E F Unbiased Bias Biased
Error
1 -1 -1 [ -1 ] 0.00482 | +0.0005 | 0.00532
1 -1 -1 1 0.00485 | +0.0005 | 0.00535
1 -1 1 |-1] 0.00371 | +0.0005 | 0.00421
1 -1 1 1 0.00498 | +0.0005 | 0.00548
2 1] -1 1]-1[ 0.00413 | -0.0003 [ 0.00383
2 1| -1 1 0.00487 | -0.0003 | 0.00457
2 1 1 | -1] 0.00439 | -0.0003 | 0.00409
2 1 1 1 0.00468 | -0.0003 | 0.00438
a) Data acquired in standard order.
CMXS
Day | D E F Unbiased Bias Biased
Error
1 -1 -1 [ -1]0.00482 +0.0005 | 0.00548
1 -1 1 1 ] 0.00498 +0.0005 | 0.00537
1 1| -1 1 1 0.00487 +0.0005 | 0.00489
1 1 1 | -11]0.00439 +0.0005 | 0.00475
2 -1 -1 1 | 0.00485 -0.0001 [ 0.00361
2 -1 1 | -11]0.00371 -0.0001 [ 0.00403
2 1] -1 1]-11[0.00413 -0.0001 | 0.00458
2 1 1 1 | 0.00468 -0.0001 | 0.00000

b) Data orthogonally blocked.

Let us now estimate the main effect for factor D,
using the table of signs algorithm introduced earlier.
The D effect for roll moment is the change in roll
moment caused by changing from a configuration
without canards to one with canards. To estimate this
effect, we multiply the 1 values in the D column times
the roll moment response values, sum algebraically, and
divide by the number of “+” signs in the D column — 4
in this case. Let us first apply the algorithm to the
unbiased data in table IV-a. We get D = (-0.00482
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- 0.00485 - 0.00371 - 0.00498 + 0.00413 + 0.00487
+ 0.00439 + 0.00468)/4 = -0.00007. This value is
within the acceptable uncertainty for roll moment in
this experiment, represented as a standard deviation of
0.00010, and we would conclude therefore that canards
have no significant net effect on roll moment. This
conclusion is in harmony with expectations based on
symmetry. The same numerical result would be
obtained if we used the unbiased data of Table IV-b, of
course.

Now apply the table of signs algorithm to compute
the D effect to the biased data of Table [V-a. We get
D = (-0.00532 -0.00535 -0.00421 -0.00548 +0.00383
+0.00457 +0.00409 +0.00438)/4 -0.00087.  Not
surprisingly, the substantial bias errors that occurred on
both days have introduced a significant error in the
result. In this case, we would have estimated a roll
moment of -0.00087, which is over eight standard
deviations away from zero. An effect of eight standard
deviations is too great to reasonably attribute to simple
chance variations in the data, and we would be forced
to conclude from the data that the addition of canards
induces a significant roll moment, implausible as that
might seem from symmetry considerations and other
discipline specialist knowledge.

Let us now estimate the canard effect with the
same bias errors in play, but with the data arranged in
the order indicated in Table IV-b. Again applying the
table of signs algorithm, we get D = (-0.00532
- 0.00548 -0.00537 - 0.00489 + 0.00475 + 0.00361
+ 0.00403 + 0.00458)/4 = -0.00007. This is precisely
the same result we obtained without the bias errors.
That is, despite the identical bias errors that produced a
roll moment error a factor of eight times the acceptable
standard deviation in unexplained variation, and despite
the fact that precisely the same combinations of
configuration variables were acquired, the re-ordering
of the data in Table IV-b produced exactly the same
estimate of roll moment we would have achieved had
there been no bias errors at alll This i1s a most
remarkable result. It implies, among other things, that
not all test matrices are created equal, and that some
set-point orderings are apparently preferable to others.
In particular, the set-point ordering that is the fastest or
the most convenient is not guaranteed to produce the
highest quality result. On the contrary, there is
generally a tradeoff between speed and convenience on
the one hand, and quality on the other. For example,
the set-point ordering of Table IV-b requires a
somewhat greater number of individual configuration
changes than the set-point ordering of Table IV-a. The
reward for this extra effort is freedom from the kinds of
bias errors featured in this example.
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This example illustrates a quality assurance tactic
known as orthogonal blocking, which is especially
convenient to implement with two-level factorial
designs. If we imagine that the columns in the design
matrix represent vectors, then the vectors of a two-level
factorial are all mutually orthogonal. That is, the sum
of term-by-term cross-products of any pair of columns
is zero. This is proportional to the cosine of the angle
between the vectors which implies that all the vectors
are at right angles, or orthogonal to each other. If a
block effect confounds one of the vectors, it will have
no effect on any of the others for that reason. The
technique used in this example, then, was to cross-
multiply the elements of the D, E, and F factors in the
table of signs to produce a column of signs for the DEF
three-way interaction. Data points were assigned to the
two blocks according to whether the signs in this
column were positive or negative. Points with positive
signs in the DEF column were assigned to one block
and those with negative signs in the DEF column were
assigned to the other. Bias errors would confound the
estimate of the DEF three-way interaction, but because
of the orthogonality property all the other columns
would be unaffected by the block effect. Thus, by
sacrificing a higher-order interaction that was not likely
to be very large compared to the main effects or lower-
order interactions, all of those potentially more
significant effects were protected from block effects.
Further details of the quality enhancements that can be
achieved by judicious set-point ordering is beyond the
scope of this paper, but is discussed in standard
references on  experiment design’”’  Specific
applications to aerospace testing are also described in
the literature.™ The chief point for the purposes of this
paper is that factorial designs such as this one can be
structured easily to eliminate what otherwise could be
significant components of unexplained variance in the
data. This, in turn, relieves the pressure to acquire data
in higher volume (i.e., to specify more configuration
changes) as a prerequisite for seeking higher precision
in a configuration test.

The Sparsity of Effects Principle

Let us return to the full six-factor two-level design,
which requires 2°= 64 total configuration changes. We
use the symbols in Table III to represent the main
effects, and we use combinations of those symbols to
represent interactions. For example, “A” and “B”
represent the main effects for left and right elevon,
respectively, “AB” represents the two-way interaction
between left and right elevon, and so forth.

There are N!/[n!(N-n)!] possible n-way interactions
involving N factors. In this experiment, then, there are
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thus 6!/(1!15!) = 6 “one-way interactions” (i.e., main
effects, and by symmetry there are also six possible
five-way interactions), there are 6!/(2!4!) = 15 two-way
interactions and again by symmetry there are 15
candidate four-way interactions, there are 6!/313! = 20
possible three-way interactions, and there is 6!/6!0! =1
six-way interaction. There are thus a total of 6 + 15 +
20+ 15+ 6 + 1 =63 total possible effects. The 64 data
points provide a single degree of freedom for each of
the 63 candidate effects, plus one degree of freedom
that is consumed in estimating the mean of the data.

Notwithstanding the substantial number of possible
candidate effects, in practical situations there are often
relatively few effects of significant magnitude.
Furthermore, there is a natural hierarchy in which main
effects and relatively low-order interactions tend to be
more significant than higher-order interactions. We call
this general tendency the “sparsity of effects™ principle,
which we will exploit presently. We can illustrate the
sparsity of effects principle for the roll moment analysis
of the current six-factor experiment that we are
considering. The left and right elevon main effects
completely dominate all the remaining 63 possible
effects, as is expected from the fact that it is elevon
deflection that provides the primary roll command
authority for this vehicle. That is, the vehicle was
designed explicitly to have significant elevon effects on
roll moment. Figure 11 is a bar chart that displays the
magnitude of the remaining 61 effects, with elevon
main effects deleted from this figure simply to enable
greater graphical resolution of the remaining effects.
(The main left and right elevon roll moment effects, A
and B, are +0.04871 and -0.04495, respectively, which
are approximately 50 times larger than the largest
interaction effect displayed in figure 11.)

The variance in estimates of the main effects and
interactions can be computed using a formula that is
easy to derive from a general formula for error
propagation provided in standard texts on uncertainty
analysis®® and it is also available in standard texts that
treat two-level factorial experiments.>’ The formula is:

20
effect = ﬁ

where N is the number of points (64 in this case) and o
with no subscript is the standard deviation in the
response variable that we are studying. The standard
deviation in roll moment was 0.00041 in this
experiment so by equation 1 the standard deviation in
roll moment effects was 2 x 0.00041/8 = 0.00010. A 57
degree of freedom estimate of the roll moment standard
deviation was based on the data, from which a 95%
confidence interval half-width was computed as

2 _40-2
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Figure 11. Main and interaction roll moment effects for GWB fiull factorial experiment. Main elevon effects, A

and B, excluded to enhance resolution.

ti0.052,57y X 0.00010 = 2.0025 x 0.00010 = 0.00021. Note
that since each main effect and interaction is a linear
combination of the same number of response
measurements, each with the same uncertainty, the
variance for all effects is the same, regardless of
whether they are main effects, low-order interactions,
or high-order interactions. All effects therefore share
the same 95% confidence interval.

The upper and lower limits of such an interval
centered on zero are marked in figure 11. Note that of
the 61 main effects and interactions represented on this
figure, 57 are within the 95% confidence interval
centered on zero. That is, for each of these 57 effects,
we have no basis for rejecting a null hypothesis that
their true value is zero and that their specific non-zero
values are attributable simply to chance variations in
the roll moment data. It is only the main elevon effects,
A and B, and their two-way interactions with factors E
and F that are significant. From Table III we see that
factors E and F are landing gear and speed brake,
respectively.

A certain degree of clarity has emerged from a
potentially large number of complex candidate effects
for roll moment. Apparently, out of 63 possible effects
that could be in play, the only significant ones are the
main elevon effects and the two-way interaction of each
elevon with the speed brake and the landing gear. That
is a total of only six effects that are not in the noise, or
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less than 10% of the 63 total possible effects. We can
use this information in a number of ways. In the first
place, knowledge of the important main effects and
interactions, as well as knowledge of which effects play
no significant role, enhance our insights into the basic
underlying mechanics of the process. While the role of
elevons in inducing roll moment is not unexpected, the
influence of the landing gear and speed brake was not
necessarily anticipated.  The fact that these were
important while the body flap and canards made no
difference provides subject matter specialists with
interesting insights into the general stability and control
problem.

It is especially useful to know which factors are
important and which are not if we decide to employ a
steepest ascent strategy to seek independent variable
combinations that maximize or minimize roll moment.
In this case we can base the direction cosine
computations and local curvature estimates on 2* = 16
comer-points rather than 2° = 64, a savings of 48
configuration settings at each stage of this process. We
not only know that we can drop 75% of the
configuration settings, we know which 75% to drop.

Fractionating the six-factor design

Recall that we used the column of signs for the
highest-order interaction as a basis for blocking the

American Institute of Aeronautics and Astronautics



Run Variable
Number A B C D E F ABCDEF Block

1 e + T
2 - - o
3 - . I
4 e * 1
s Lol e - i
6 DLy oy + 1
7 e e e W * 1
8 - i+ o+ ok - I
63 + o+ o+ F o+ Il
64 ¥ F F 3 o4 + I

Figure 12. Using the 6-way interaction to blocking
a six-factor 2-level design.

experiment in such a way that block effects confounded
the high-order interaction (which is not usually
expected to be significant by the sparsity of effects
principle), and in this way defended all main effects and
all other interactions from block effects. If we were to
block this six-factor experiment into two blocks in this
way, we would sacrifice the ABCDEF six-way
interaction in order to ensure that all other effects are
clear of block effects. Figure 12 illustrates how we
would use the ABCDEF interaction to assign points to
blocks in this way, where the signs alone are used as
implied +1 values to conserve space and in keeping
with another common convention for representing high
and low levels in a two-level factorial design. Since
only six degrees of freedom are consumed in estimating
the six significant roll moment effects and one more is
needed for the mean, it is reasonable to ask why the 32
data points in the first block would not be ample for our
purposes. Why press on to acquire 32 additional data
points beyond the 32 we already have acquired in the
first block, if the sparsity of effects principle suggests
that with 32 degrees of freedom already acquired we
probably have more than enough data to quantify the
number of effects that are likely to be significant? One
reason might be that additional degrees of freedom are
needed via equation 1 to satisfy inference error risk
tolerance specifications. Another reason might be that
we simply fear there are more significant effects in this
specific situation than the sparsity of effects principle
would suggest for the general case. However, in many
commonly occurring circumstances we can do with a
significantly smaller volume of data (which means
significantly fewer configuration settings in a
configuration study) than is necessary to estimate every
single main effect and every single higher-order
interaction that is theoretically possible.
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Note also that the number of configuration settings
required to estimate all theoretically possible effects
doubles with the addition of each new configuration
variable. The Blended Wing Body is a proposed
transport concept with 16 trailing edge control surfaces,
for example. With power on/off as a 17" variable, over
131 thousand configuration changes would be needed
for a full-factorial experiment in these 17 variables,
even if each was set at only two levels. However, it is
highly unlikely that any of the 17!/(8!9!)=24,310 eight-
way interactions will be large compared to the main
effects and lower-order interactions, for example, and
likewise for the 23,310 nine-way interactions, the
19,448 ten-way interactions, the 12,376 1l-way
interactions, and so on. Experience suggests that
significant interactions much beyond about 3"-order are
unlikely, and that not even all effects of order three or
less will be significant. So in large problems such as
this a full factorial design seems especially wasteful.
This leads to the concept of “fractionating” the design
to more closely match the number of configurations
examined with the number of effects that are likely to
be real. We will use the six-variable GWB landing
stability test to illustrate an efficient approach to
fractionating the full factorial design, and to illustrate
the penalty associated with the substantial cost savings
that accrue from eliminating configuration settings.

Imagine that we have blocked this design as
indicated in figure 12, by using the six-way ABCDEF
interaction column to assign configurations to blocks.
Assume further that we have executed the first block
only. Such a design is called a half-fraction of the full
factorial design, for obvious reasons. Figure 13
represents the table of signs for this half-fraction
design. This table of signs has almost exactly the same
structure as the full factorial design. The only
difference is that the ABCDEF six-way interaction
column contains all values of the same sign (the sign
used to define this block as in figure 12), and there are
only 32 rows instead of 64, reflecting the factor of two
cost savings we are attempting to achieve. We could
proceed to use the table of signs algorithm with this
table to estimate all the effects exactly as before (except
the six-way interaction effect that we have sacrificed to
achieve this cost savings), and we would have set only
32 configurations, a great savings of time and money.

The wary reader may sense the onset of a free
lunch proposition about which he is entitled to be
skeptical. Is it really reasonable to assume that 32
degrees of freedom are sufficient to unambiguously
estimate the mean plus any of up to 63 additional
effects? No, of course it is not. We “pay for our lunch”
through a phenomenon known as “aliasing”, which can
be illustrated by comparing the column of signs for the
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F factor main effect in figure 13 with the column of
signs for the ABCDE five-way interaction, for example.
Both columns of signs are identical. This means that
when we use the column of signs algorithm to estimate
the main effect for factor F, we actually compute the
sum of this effect plus the five-way interaction effect.
If we adopt a common convention by using square
brackets to represent an aliased estimate of an effect
and no brackets to represent the true effect, then we can
write [F]=F+ABCDE to indicate the aliasing. The term
“alias” derives from the fact that the same column of
signs now caries two labels or names — I and ABCDE.

Note that the F effect is not the only aliased main
effect. The column of signs for the E main effect is
identical to the column for the ABCDF interaction in
figure 13 so we also have [E][=E+ABCDF, and likewise
[D]=D+ABCEF. It turns out that all main effects and
every interaction effect is aliased in this way. (It is just
as proper to say that the ABCDE five-way interaction is
aliased by the I main effect as to say the main effect is
aliased by the interaction, so we can also express this as
[ABCDE]=ABCDE+F.) That is, every estimated effect
is actually the sum of that effect plus one additional
effect. A little reflection reveals why this must be.
There are a total of 63 possible effects plus the mean,
which must now be estimate with 32 degrees of
freedom. Fach degree of freedom must therefore do
double duty, representing two effects instead of one.

At first glance, aliasing may seem to represent a
hopeless confounding of effects. If every estimated
effect is really the sum of two different effects, how can
we determine how much is contributed by one effect

and how much by the other? Without performing the
entire full factorial experiment, we cannot tell
definitively how much each of the two aliased effects
contributes to the estimate computed from their
common column of signs. However, we can invoke the
sparsity of effects principle again, to surmise that the
higher-order interactions are likely to be either non-
existent or relatively small compared to the main effects
and lower-order interactions. So in cases such as we
have illustrated here, where main effects are aliased by
five-way interaction effects, there is reason to believe
that the aliased estimate of the main effect may not be
much different from the true main effect. That is, we
have some reason to believe that the enormous savings
we have achieved in time and money may have been
secured with a relatively small price in the quality of
our result. If we can arrange it so that the effects that
are likely to be important are aliased by effects that are
likely to be insignificant, then we may be able to
enhance productivity substantially.

The full-factorial roll-moment data set for the
GWB experiment was reanalyzed, using only the half-
fraction component of figure 13. The main left and
right elevon effects for roll moment, A and B, were
aliased in this case by the BCDEF and ACDEF five-
way interaction effects, respectively. Nonetheless, at
+0.04858 and -0.04501 they were still on the order of
50 times larger than the next largest effect in the half-
fraction design, just as in the full factorial case, and
their significance as important roll moment drivers is
therefore still unambiguous despite the aliasing. Figure
14 displays all of the other (aliased) effects, with the

L L : v v _ : Six-Factor

Run Main Effects Two-factor Interactions Five-factor Interactions Interaction

Numhber A B C D E F .. BF CF DF EF ABCDE ABCDF ABCEF ABCDEF
1 - + + + - - - +
4 e e e - - - + * - *
B = omie e = - + = - +
7 - + + - - = + +
10 - e k. e - . - + - - +
11 - - + - + - - + - +
13 . . . . +
18 - .o+ + o+ - + + + + +
64  oF F + + + + et + + +

Figure 13. Table of signs for one block representing half of a six-factor 2-level design.
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(aliased) A and B effects removed from the plot as
before to enhance graphical resolution.

We know what the benefit is of conducting the six-
factor two-level configuration experiment as a half
fraction: We save 32 potentially arduous and time-
consuming configuration changes. Even under the
ambitious assumption that we could make such changes
every 15 minutes, this would have reduced cycle time
by a full eight-hour day. A full cost accounting
evaluation of the impact of a day’s cycle time reduction
transcends the scope of this paper and the expertise of
the authors. We note, however, that it is not uncommon
for a major aircraft manufacturer to have several
billions of dollars committed to bringing a new aircraft
design to market. At historical market rates, the cost of
capital (interest) on this much money can approach the
million-dollars-per-day level.  There is also the
weighted expectation value cost associated with the risk
that a competitor will bring some similar design to
market a day earlier. Clearly, saving a day of cycle
time now and again on a major program can translate
into substantial benefits on a full cost accounting basis.
This 1s likely to be true even on smaller projects.

The cycle-time savings afforded by fractionating
two-level factorial designs do not come without costs,
as the above discussion of aliasing indicates. We can
compare figure 14 to figure 13 to assess the impact of
such aliasing for the six-factor GWB landing stability
test we have been examining. This comparison is quite
revealing. Again, as in figure 13, horizontal dashed

lines indicate the upper and lower limits of a 95%
confidence interval centered on 0, which is computed
under the assumption that chance variations in the data
are the only sources of error. This represents the
minimum uncertainty that could be achieved with a 32-
point data sample given the variance in individual roll
moment measurements, per half-width computations
based on the standard error formula in equation 1. The
95% confidence interval half-width for the fractionated
design is 0.00032, versus 0.00021 for the full factorial
design, reflecting the smaller sample through equation 1
plus the slightly enlarged t-statistic associated with the
difference between 57 degrees of freedom to estimate
the unexplained variance for the full factorial case and
only 25 degrees of freedom that would have been
available to assess the unexplained variance in the half-
fraction.

The essence of figure 14, which represents the half-
fraction case, is that it virtually indistinguishable in its
important details from the full-factorial case of figure
13. The magnitudes of four interaction effects are again
substantially larger than all other effects, which are
seen to be statistically indistinguishable from zero just
as in the full-factorial case. The same (albeit aliased)
interaction effects are clearly distinguishable from the
noise for the half-fraction case as for the full factorial
case. That 1is, the half-fraction inferences are identical
to those drawn from the full factorial -case,
notwithstanding the fact that they are based on half the
data.

.0010
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.0004
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Figure 14. Main and interaction roll moment effects for GWB half-fraction experiment. Main elevon effects, A

and B, excluded to enhance resolution.
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Figure 15. Half-fraction alias errors for roll moment.

We have already noted that the main effects are
aliased with five-way interactions in the six-factor half-
fraction design. All the two-way interactions are
aliased with four-way interactions, as it happens.
Specifically, for the four significant two-way
interactions we have that [AFE] AE + BCDF,
[AF] = AF + BCDE, [BE] = BE + ACDF, and
[BF] = BF + ACDE. The sparsity of effects principle
suggests that the four-way interactions will be small
and that the two-way interaction estimates will not be
substantially different with or without aliasing by four-
way interactions. It is always a good idea to examine
the specific aliasing effects to see if there is any special
reason to believe that they constitute an exception to the
general sparsity of effects principle, but if there are no
such special cases, we have the option of accepting the
extra uncertainty associated with the aliased estimates
of the significant effects, as the price we pay for a
substantial savings in cycle time.

In this pedagogical example, we have the luxury of
examining both the aliased and unaliased estimates of
the significant main effects and two-way interactions.
Figure 15 shows the difference for each of the two
significant main effects and four significant two-way
interactions. These differences represent an additional
component of uncertainty introduced by the aliasing
with higher-order interactions. (In this case they
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represent the magnitude of the high-order aliasing
effects themselves.) The 95% confidence interval
associated with errors in the 32-point effects estimates
induced by ordinary chance variations are indicated in
the figure. It is clear that the errors due to aliasing are
no greater than ordinary random experimental error in
this case, and that the cost/benefit tradeoff associated
with fractionating the design would have been a
favorable one. (In the actual experiment, the full
factorial case was executed as part of an in-house
demonstration/evaluation of the benefits of fractional
factorial designs, but a fractional factorial would almost
certainly have been executed in the case of a six-factor
experiment, given the likelihood that only low order
effects would be significant and that they would be
aliased with higher-order effects.)

Fortunately, it is easy to forecast the aliasing
patterns in advance, through a simple mechanism
known as the “defining relation” that will now be
described. We begin by defining a column containing
all plus signs as an identity column, denoted by “I”.
For example, the ABCDEF column in figure 13 is an
identity column. We can therefore write in this case
that [=ABCDEF. This equality is the “defining
relation” for this half-fraction design.

We introduce a special algebra for the columns of
signs in which multiplication of two columns is meant
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to imply the term by term multiplication of
corresponding elements in each vector, in exactly the
same way that columns for the interaction terms were
formed from the main effects columns in the table of
signs. The columns algebra features only two rules.
The first rule is that since the identity column is a
column of plus signs only, multiplying “I” times any
other column results in that same column. The second
rule is that multiplying any column times itself
produces the identity column. This is because +1 time
+1 1s +1, and -1 times -1 1s also +1. Armed with these
two rules and the defining relation, we can now
determine the aliasing patterns for any main effect or
interaction. For example, to determine the aliasing
pattern for the “A” main effect, we simply multiply
both sides of the defining relation by A and invoke our
two rules involving the identity column:

I=ABCDEF

Ax1=AxABCDEF = (A x A) x BCDEF
A =1x BCDEF

A =BCDEF

This tells us that A and BCDEF are aliases of each
other.

The same procedure can be sed for any other
effect. For example, B x I = B = B x ABCDEF
= A x (BxB) x CDEF = AICDEF = ACDEF. So B and
ACDEF are aliases. The general algorithm when
multiplying a word in the defining relation by some
other word is to drop all letters common to both words
and retain only those that are unique to one word or the
other, then to drop the “T” factors.

We can see from the defining relation that the AE
interaction we saw was significant is aliased by the
BCDF interaction, the AF interaction is aliased by the
BCDE interaction and so forth. There were no
significant three-way interactions for roll moment but
we could easily have determined their aliasing patterns
had any been significant. Multiplying [=ABCDEF
through by ABC, for example, yields ABC = DEF.
These two three-way interactions are therefore aliases
of each other and share the same pattern of signs in
their respective effects columns in the half-fraction
design.

A pattern has emerged in which we see that main
effects are aliased with five-way interactions, two-way
interactions are aliased with four-way interactions, and
three-way interactions are aliased with other three-way
interactions. That is, #-way interactions are aliased
with m-way interactions, where in this case n+m=6.
We use the term “resolution” to describe this situation
and say in this specific case that a half-fraction of a six-
factor two-level factorial is of “resolution VI”, where it
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is a convention to use Roman numerals to indicate the
resolution. Note that the resolution of the design equals
the number of characters in the longest word of the
defining relation.

If we can neglect 3™-order interaction terms and
higher, we can be confident that the aliasing that occurs
in a fractional factorial design of resolution V or higher
will not be a serious problem. This is often a safe bet in
practical circumstances, but since the aliasing patterns
are known in advance, we can also assign the physical
variables to factor letters in the design in such a way as
to exploit our subject matter expertise to cluster
unrelated effects into the interaction terms that alias the
effects that most interest us. A certain amount of
judgment is required to do this effectively, not to say
some plain good luck. Nonetheless, it is possible to
“stack the deck” in the researcher’s favor by the
judicious exploitation of aliasing patterns in advance.

Quarter-fraction designs

Having achieved such a good cost/benefit trade
through a half fraction of the original full factorial
design, it is natural to ask if we could divide the half-
fraction in half again, achieving an even greater
reduction in the number of configurations we would
need to set. After all, even a half fraction requires 32
configuration settings, which may still seem excessive
since in our example we know that only six effects are
important. In a real application we would not know in
advance exactly how many significant effects to expect,
of course, but the sparsity of effects principle gives us
the same general answer in all cases: “Not very many.”
On that basis we may be tempted to explore further
fractionation.

Recall that we began the development of the half-
fraction design by using the column of signs for the
highest-order interaction term in the full factorial to
break the design into two half fractions, according to
which points had plus signs in that column and which
had minus signs. We call the ABCDEF interaction
term used for this purpose a “design generator”.

A single design generator was used to create the
half fraction design. Two design generators can be
used to create a quarter fraction. We select two
columns of signs from the full factorial design and
divide the points (the rows in the table of signs) into
four 16-point fractions according to whether both signs
in the two defining generators are positive for a given
point, both are negative, the first is negative and the
second is positive, or the first is positive and the second
is negative. We can use whichever of the four quarter
fractions is most convenient. In this example we will
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consider what is called the “principal fraction”, which
is formed from the points with plus signs in the same
location of the two design generators. For this case we
used as design generators the ABCE and BCDF
interaction terms from the full table of signs. The
criterion for selecting design generators is that we wish
to develop the highest-resolution design possible to
minimize aliasing effects. In reality, this is a solved
problem for designs featuring a wide range of numbers
of factors and for wvarious levels of resolution.
Computer software exists for designing fractional
factorials in which the number of factors and desired
number of points are specified (six and 16, respectively,
for the quarter-fraction design we are currently
considering) and the design generators that produce the
highest resolution design are then selected by the
computer via a table lookup scheme involving tabulated
results of years of trial and error design attempts. The
reader can also consult the literature for these tables of
optimum design generators.*"'%!!

Because we use the principal fraction, both of the
design generators for our quarter fraction design will be
identity columns and we will have I = ABCE = BCDF.
There is an interaction effect associated with any pair of
effects that can be determined by column multiplication
of the kind we have been using all along. In this case,
the interaction of the ABCE and BCDF effects is
ABCE x BCDF = A (BB) (CC) DEF = AIIDEF
= ADEF. Since both ABCE and BCDF are identity
columns their product is also, and we have the
following defining relation for this quarter fraction
design:

I = ABCE = BCDF = ADEF @

We see immediately that this will be a resolution
IV design, because the longest word in the defining
relation has only four characters. That means that if we
can neglect interactions of order three and higher, we
can still expect to have reasonably clear estimates of the
main effects of all six factors, since main effects are
only aliased with interactions of order three or higher in
a resolution IV design. The two-way interactions will
be a bit more problematic, however, because two-way
interactions are aliased with other two-way interactions
in a resolution IV design, and one would seldom be
justified in assuming no significant two-way
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interactions.  Still, it is possible to gain important
insights in a relatively short period of time with highly
fractionated (i.e., relatively low resolution) designs
such as this, as we can demonstrate by further
fractionating our roll moment experiment design.

We are in the fortunate position of having already
analyzed a full factorial version of this experiment, so
we know which factors are significant without any
ambiguities introduced by aliasing. They are the A and
B main effects for left and right elevon deflection, and
the two-way interactions of each of these main effects
with variables E and F, the landing gear and speed
brake, respectively. We can use the defining relation
for our quarter-fraction design to determine the aliasing
pattern for these significant effects. They are as
follows:

[A] = A + BCE + ABCDF + DEF
[B] =B + ACE + CDF + ABDEF

[AE] = AE + BC + ABCDEF + DF
[BE] = BE + AC + CDEF + ABDF
[AF] = AF + BCEF + ABCD +DE
[BF] = BF + ACEF +CD + ABDE

Note that each estimated effect is actually the sum
of four effects, consistent with the fact that we have 16
degrees of freedom available to represent a total of 64
potential effects (63 plus the mean). FEach available
degree of freedom must therefore carry four effects.

The main left and right elevon effects are as
unambiguously part of the solution in this quarter-
fraction design as they were in the full factorial and half
fraction. Again, the three-way and five-way
interactions are not likely to be large compared to the
main roll moment effects, especially when the main
effects are elevon deflections.

Figure 16 presents the quarter fraction effects
except for A and B, again deleted to increase graphical
resolution for the remaining effects. The aliased
versions of the four effects we know to be significant
again protrude above the noise, although less so
because the 95% confidence interval is now wider,
reflecting the additional factor of two reduction in
sample size and the aliasing effects. Interactions higher
than third order have been deleted from the labels of the
effects in figure 16.
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We already know which effects are real and which
are noise from the full factorial results, but we must put
ourselves in the position of an experimenter who has
conducted only the quarter-fraction result. What can be
said about these results without the benefit of the extra
knowledge we possess in this special case? One
plausible line of reasoning might develop along lines
similar to the following: We start with the two
significant effects the furthest to the right in figure 16.
These are:

AF +DE
BF +CD

We already know that the main A and B effects
dominate the roll moment. We know this because of
the relatively unencumbered estimate that a resolution
IV design provides for main effects, which indicate that
they are about 50 times larger than the next largest
significant effect, and also from our own subject-matter
expertise, which informs us that the elevons provide the
main roll control authority for the vehicle. Since the A
and B effects are so important for roll moment, it is
more likely that a true two-way interaction would
include A or B than any other factor. Thus, AF is more
likely than DE to be a real effect, and likewise BF is
more likely to be real than CD. Taken together, if we
tentatively accept that either AF or BF is real, then it 1s
more likely by simple symmetry that the other is also
real. That is, if the /eff elevon interacts with the speed
brake (factor F), then it seems likely that the right
elevon would also interact with it. If instead we assume

that DE dominates AF and CD dominates BF, we are
left with a model in which the canards (factor D)
interact with the body flap (factor C) and the landing
gear (factor E), and that these interactions are greater
for roll moment than the AF and BF interactions that
involve the main roll moment control surfaces. While
this is not impossible, it seems rather unlikely. It is
reasonable to assume that the analyst would correctly
infer that the AF and BF interactions were significant,
despite the relatively substantial aliasing in the quarter
fraction design.

The two significant effects on the left side of figure
16 are somewhat more ambiguous. They are as
follows:

BE + AC
AE +BC +DF

We could perhaps eliminate the DF interaction
from contention on the grounds that it does not involve
either of the elevons and all four of the remaining
candidate interactions do. However, there 1s no rational
basis for favoring a model in which both elevons
interact with the landing gear (factor E) over a model in
which both elevons interact with the body flap (factor
). So the real portions of the above two aliased pairs
of effects could just as easily be AE and BE, or AC and
BC.

Here we see that aliasing has introduced an
ambiguity that is irresolvable without some additional
information. We are presented with two outcomes that
are equally plausible — that the dominant elevon effects

0.0015

0.0010

0.0005

0.0000

Size of effect

-0.0005

-0.0010

-0.0015

Effect

Figure 16. Main and interaction roll moment effects for GWB quarter-fraction experiment.

effects. A and B. excluded to enhance resolution.
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Figure 17. Main and interaction roll moment effects for GWB experiment affer factor-C augmentation. Main

elevon effects. A and B. excluded to enhance resolution.

can be influenced either by the influence of the landing
gear deployment or by the deflection of the body flap, a
trailing-edge control surface mounted on the axial
centerline of the vehicle aft of the a propulsion pod and
halfway between the left and right elevons. This
suggests that eliminating 48 of the 64 candidate
configurations may have been too ambitious in this
case, and that a resolution VI half fraction — which
nonetheless eliminates half of the configurations
without having to drop any of the variables from the
design — might be the best selection. However,
assuming that we have just executed this quarter-
fraction design in six variables, we would like to be
able to augment it methodically so that we can proceed
to a half fraction without having to throw away any of
the results obtained so far. Fractional factorial designs
permit us to do exactly tha, whereas if a small scale
OFAT design obtains insufficient information, the
researcher is quite frequently in the position of starting
substantively from scratch.

There are numerous augmentation strategies
available for fractional factorial designs but many of
them involve techniques for adding fractions
judiciously. For example, for a 16-point quarter
fraction of a six-variable two-level factorial, these
strategies would typically involve adding an addition
16-point fraction. One way of doing this is called a
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“foldover” augmentation that in this case would add 16
more points to the design with all the plus signs and
minus signs reversed in the table of signs. This strategy
has the effect of clearing main effects of certain low-
order interaction effects, providing a higher resolution
estimate of all the main effects. For example, the
foldover of a resolution III design, in which all main
effects are confounded by two-way interactions that
cannot be neglected out of hand, results in a resolution
IV design with all main effects clear of interactions less
than 3™-order.

Another strategy is to create a second fraction
identical to the first, except that all signs in the column
for one main effect are reversed. This clears the main
effect of that variable and all of its two-way interactions
of effects less than 3™-order. In our case, neglecting
3™order interactions or higher, we have two aliased
terms for which either alias is plausible. We have an
effect that is equal to BE + AC and another effect that
is equal to AE + BC (+ a third candidate interaction
effect for roll moment that does not involve the elevons,
which we are temporarily discounting). We cannot say
whether the elevon effects interact with the E factor
(landing gear) or the C factor (body flap). We decide to
relieve this ambiguity by reversing the signs in the
column for the C main effect in an otherwise identical
table of signs for the quarter fraction. This will free the
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main effect of the body flap from low-order interactions
and likewise its two-way interaction with all other main
effects and two-way interactions.

Table V. Augmentation of quarter-fraction design

Quarter-Fraction Significant Terms

A + BCE + DEF + ABCDF 0.04845
B + ACE + ABDEF + CDF -0.04497
BE + AC + CDEF + ABDF 0.00075
AE + BC + DF + ABCDEF -0.00115
AF +BCEF +DE + ABCD 0.00088
BF + ACEF + ABDE +CD -0.00112

Significant Terms of Augmented Design

A+ DEF 0.04866
B + ABDEF -0.04501
BE + ABDF 0.00071
AE + DF -0.00099
AF + DE 0.00099
BF + ABDE -0.00094

Body-Flap Terms After Augmentation

14, showing effects for the full factorial and original
half-fraction, respectively.

The effects we have been estimating represent the
change in response (e.g., roll moment) associated with a
change in coded variable from —1 to +1. The effects
therefore represent twice the change in response due to
a unit change in the factor. The change in response due
to a unit change in a factor represents the coefficient of
a response model. We can therefore use the significant
factors we have discovered to build a response model
that can be wused to predict responses at other
combinations of the independent variables besides the
ones we set in the experiment. We estimate the
constant or y-intercept for this model by applying our
table of signs algorithm in the usual way, but using the
identity column (all plus signs) that forms the left-most
column of the design matrix. The algorithm requires us
to apply the signs to the response column, compute the
algebraic sum, and divide by the number of plus signs,
which simply results in the sample mean for the entire
data set. This, then, is the y-intercept.

Table VL. Coefficients of roll moment response

C -.000020 model from full factorial design
AC 0.00003 (half the effects estimates).
Be -0.00017 Coefficient | 95% Cl 95% C1
oefficien o o
cb -0.00018 Factor Estimate Low High
CE 0.00010
CF 1.85E-04 Intercept 0.00267 0.00257 0.00277
A 0.02435 0.02425 0.02446
Table V compares the significant main effects from B -0.02248 | -0.02258 | -0.02237
the quarter fraction design with the corresponding AE -0.00039 | -0.00050 | -0.00029
effects of from the augmentation. Note that the AF 0.00043 0.00033 | 0.00053
ambiguities involving the C factor are resolved. In BE 0.00043 0.00033 | 0.00054
particular, all of the interaction terms involving the C BF -0.00044 | -0.00054 | -0.00034

factor are now eliminated from the aliasing pattern of
the augmented design. Furthermore, unaliased
estimates of C and its two-way interactions with each of
the other five factors are now clear of interaction terms
that were present in the quarter-fraction design. This
permits us to see how small they are. Recall that no
roll-moment effect from a 32-point sample with the
experimental error of this investigation can be resolved
at 95% confidence unless its magnitude is at least
0.00032. The AC and BC effects that were causing so
much confusion in the quarter-fraction design are now
seen to be +0.00003 and —0.00017, respectively — well
below the noise floor. So we know now that these
terms were not responsible for the effects being
significant, and that it is now much more clear that it is
the landing gear (factor E) that is interacting with the
elevons, not the body flap. Figure 17 displays the
effects estimated after the factor-C augmentation to the
quarter-fraction design. It is similar to figures 11 and
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Table VI displays the roll moment response model
coefficients for the full factorial design. These are half
the effects values we estimated by applying the table of
signs algorithm, and the intercept is the average of all
64 roll moment estimates. We can use these
coefficients to construct a roll moment model as
follows:

CMXS =0.00267 +0.023454
—0.02248B - 0.000394F
+0.000434F +0.00043BE
—0.00044BF

3

where from Table III we know that A and B are left and
right elevon deflection angles, E is landing gear and F
is speed brake. The landing gear and speed brake
factors are categorical values, assuming only the values
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of +1. The elevon variables are numeric, and can
assume a range of values between £1.

A close examination of equation 3 and the 95%
confidence interval limits in Table VI reveals
something remarkable. The coefficients of all four 2-
way inferact terms are equal within experimental error!
Note also that the magnitudes of the two main elevon
effects are also similar, although not indistinguishable
within experimental error. If we use the average
magnitude of the four two-way interaction terms
(0.00042) to represent the magnitude of all four terms,
we can simplify equation 3 considerably. Within
experimental error, equation 3 reduces to

CMXS = 0.00267 +0.000974
~0.02248(4 - B)
+0.00042[(4 - B)F - E)]

“4)

This has the general form of

CMXS = by + b A+ (b, +byx, )y, ©)
where the b, values are numerical constants, 4 1s left
elevon deflection as before, x; is a new variable
representing the differential elevon deflection — left
elevon minus right — and x, is another new variable
representing F-F, the difference between the categorical
variables describing speed brake and landing gear
deployment, respectively. The variable x, takes on
three discrete values: 0 when either the landing gear
and the speed brake are both deployed or neither
deployed, +2 when the speed brake is deployed and the
landing gear is retracted, and —2 when the landing gear
is deployed and the speed brake is not deployed. The
picture that emerges, then, is that for a given deflection
of the left elevon, A, the roll moment is a simple linear
function of differential elevon setting with a slope that
depends on the speed brake and landing gear
deployment. A given change in differential elevon
setting has the most effect on roll moment when the
speed brake is deployed and the landing gear is
retracted, the least effect when the gear is deployed and
the brake is not, and an intermediate effect when both
are deployed or both are retracted. Gear and brake
therefore serve as “gain factors™ to alter the sensitivity
of the elevon’s roll authority on approach. With gear
down for approach (E = 1), deploying the speed brake
desensitizes roll moment with respect to differential
elevon setting, making that approach more stable in that
the vehicle will be less sensitive to differential elevon
displacements.  Retracting the speed brake would
augment the roll command authority, if additional
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maneuverability was required on short notice during
approach, for example.

We emphasize that considerable insight into
underlying flight mechanisms can be achieved through
these simple two-level factorial designs, and if
additional detail is needed to describe curvature in the
response functions for example, it is easy to augment
the two-level design with additional levels as needed.
In the meantime, the two-level full and fractional
factorials can efficiently separate a myriad of candidate
factors into what Professor George Box famously
distinguishes as the “vital few” and the “trivial many”.
This, then, provides a rational basis for further study
that concentrates on the most important configuration
variables without wasting resources on those that have
relatively little influence.

Concluding Remarks

Fractional factorial experiment designs appear to
have a number of attractive features that are especially
relevant to configuration testing in wind tunnels. They
illuminate interactions among multiple configuration
variables that conventional OFAT methods can
overlook. In so doing, they reveal opportunities to
combine variable levels in ways that do not assume that
individual factor effects are strictly additive. This can
lead to substantial and unanticipated system
performance improvements.

Factorial designs also serve as useful building
blocks in more complex experiments. They can serve
as the basis of steepest-ascent optimization procedures
that rapidly identify design-space regions where
specific responses occur as extremums. Time-
consuming investigations geared to identify detailed
response behavior in the vicinity of important maxima
or minima can be reserved for design-space regions
where such maxima or minima have been efficiently
localized using factorial designs.

Factorial designs present the researcher with an
attractive alternative to the wholesale elimination of
candidate factors that is often otherwise required to
conform with inevitable resource constraints when there
is a large number of candidate configurations variables
in play and insufficient time to set every combination.
Retaining all candidate variables has the obvious
advantage that more factor effects can be examined, but
also the subtle advantage that effects that may not have
a large direct influence on system response can
nonetheless influence the sensitivity of system response
to changes in some other variable. Factorial designs
increase the probability of detecting such effects by
retaining all candidate factors in the study while simply
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eliminating combinations of them that contribute
relatively little to the understanding of the most
important main effects and interactions.

Factorial designs provide a path for efficiently
adding additional data when initial data sets are
inadequate to unambiguously resolve effects of interest.
This saves the resources that might otherwise be wasted
if it were necessary to start completely from scratch in
such circumstances.

There is a direct relationship between the effects
that are quantified in factorial configuration studies and
the coefficients of response models that can be used to
predict responses for other combinations of variables
besides those physically set in the experiment. These
response models can often yield surprising insights into
the underlying physical mechanisms that govern the
response of the system.
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